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Executive Summary 

Expanding the deployment of traffic monitoring systems and information transmission is 

a crucial step toward increasing the efficiency, reliability, and safety of vehicular transportation. 

In this report. we present a real-time data analysis system for aerial LiDAR roadway vehicle 

detection as an option for expanding traffic monitoring. The presented solution is able to perform 

typical post-flight processing in real time with minimal computational and power requirements, 

which allows its implementation on light-weight unmanned aircraft systems (UAS). The solution 

utilizes adaptive segmentation and 3D convolutions, which take advantage of the structure of the 

LiDAR point cloud, to identify vehicles and their respective positions within 3D point cloud 

segments that may include background clutter. All the necessary positioning information 

required to run the algorithm is introduced, along with a detailed description of the 

computational steps for extracting the desired features from the raw data. We provide the timing 

constraints for the system and evaluate its performance while considering different optimization 

variables and computation capabilities. The proposed convolution algorithm can achieve a 

detection ratio of greater than 85 percent and is able to detect the presence of vehicles with less 

than 0.75 seconds of computation time. 
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CHAPTER 1 INTRODUCTION 

The continuous growth of urban areas and their accompanying infrastructure 

development have created complex transportation networks that surpass the monitoring 

capabilities of departments of transportation (DOTs). Most of the current technologies that 

collect data on road and traffic conditions are centralized, require expensive infrastructure, and 

present surveillance limitations, which often include continuous active human involvement [1]. 

This limits their usability to well developed, busy areas with a higher flux of vehicles and 

established infrastructures. 

As a solution for the mobility constraints presented by standard traffic monitoring 

systems, unmanned aircraft system (UAS) units provide a level of flexibility that makes them 

suitable for different applications, from disaster response to delivery of packages [2]. Because of 

the versatility of UAS units, different research efforts have been conducted to further expand 

their relevance to different activities. Such studies have involved navigation improvements in 

urban environments [3], integration with vehicular communication networks [4], and 

development of systems to foster continuous operation [5]. 

In alignment with the expansion of the UAS industry and the growing interest in 

autonomous vehicles (AVs) and other computer vision applications that demand real-time 

responses, light detection and ranging (LiDAR)-based systems have become one of the main 

components in the collection of spatially dense and accurate 3D information [6]. As LiDAR 

technology continues to improve, it is also becoming more popular and adaptable to different 

tasks, particularly in transportation-related applications [7], [8]. 

Recently, the National Cooperative Highway Research Program (NCHRP) Project 15-44 

developed guidelines for the application of mobile 3D LiDAR technology to the operations of 
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state DOTs. The project web page states that “Mobile LiDAR is one of several new 3D 

technologies that offer the promise of transforming the way in which transportation agencies 

plan, design, construct, and maintain their highway networks” [7]. The project report identifies 

emergency response, clearances, traffic congestion, and parking utilization as potential mobility 

based traffic operation applications that can be monitored and enhanced by using LiDAR 

technology. The multifaceted benefits of adapting such a mobile distributed solution includes 

safety, cost-effectiveness, and ease of use [9]. 

Although mobile LiDAR technology has been considered for different tasks to improve 

the efficiency of transportation networks [10], it also poses serious challenges when applied in 

the context of real-time processing under very strict energy/hardware constraints. The richness 

and detail of LiDAR data rely on the number of coordinate points stored, which can exceed tens 

of millions of data points, depending on the areas scanned. For example, the Velodyne Puck Lite 

(VLP-16 Lite), utilized in the proposed system, generates up to 300 k data points per second. 

Because of this large data generation rate, the device’s transmission over a wireless channel 

would encounter energy and bandwidth limitations, which are very strict for light-weight UAS 

platforms to maximize battery life (i.e., increase flight time). These bandwidth and energy 

limitations have led many researchers to perform post-flight data processing, sacrificing real-

time response to the information gathered, which could be crucial to the specific application 

(e.g., emergency response) [11]. 

Given the needs of real-time traffic applications, combined with the limitations posed by 

small, light-weight UASs, we propose an adaptive, light-weight object detection system that can 

utilize an on-board processor to analyze data during the scanning flight. This requires that data 
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collection, processing, and transmission be carefully designed to fit within the very limited 

timing, weight, and power constraints of mounting such a system on a UAS. 

The successful implementation of an on-board object detection solution for unmanned 

mobile LiDAR systems will make it possible to cover wide transportation network segments, 

facilitate real-time decisions to improve system-wide efficiency, monitor and extract information 

about different modes of transportation, collect data on parking occupancy and utilization, and 

improve overall efficiency and reliability of transportation systems. 

This report presents the development of a system that targets object detection from 

LiDAR scans in real time on single-board, UAS-mountable computers. We specifically targeted 

ultra light-weight UAS platforms that have extremely limited power and payload. This report 

describes the proposed system and the evaluation of its performance, presenting its suitability for 

on-board implementation for real-time applications. At the end we discuss next steps toward the 

integration of a single UAS platform into larger systems. 
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CHAPTER 2 RELATED WORK 

Because of its 3D information capabilities, LiDAR technology has been widely used in 

the collection of aerial and terrestrial data. With applications in fields that include geology, 

robotics, archaeology, and transportation, LiDAR scanners have allowed the compilation of data 

that allow professionals to study vegetation structures [12], perform hydro-graphic surveying 

[13], and identify objects in urban settings [14]. 

Previous efforts have also shown that airborne and roadside LiDAR data can be used to 

detect vehicles. With a multichannel LiDAR sensor, researchers at the University of Houston 

scanned the same area multiple times with short time intervals between each scan. By doing so, 

they were able to identify objects that changed position between each scan [15]. In a terrestrial 

application, a roadside LiDAR unit was able to identify vehicles and track their trajectories after 

data were processed offline [16]. 

In comparison to previous works, the proposed airborne LiDAR-based system utilizes a 

less complex algorithm and also requires less sophisticated LiDAR equipment. While some 

projects have implemented neural networks and other hybrid recognition schemes [17], we 

reduced the identification procedure to a convolution scheme. Moreover, we used a Velodyne 

Puck Lite (VLP-16 Lite) LiDAR for the data collection procedure, a lightweight, compact, and 

low power consumption scanner. 
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CHAPTER 3 PROPOSED SYSTEM 

Figure 3-1 shows the obstacles to a real-time LiDAR-based systems and figure 3-2 

depicts the overall operation of the proposed lightweight end-to-end algorithm for on-board 

object recognition. To achieve real-time performance and allow the implementation on a 

compact, on-board computation platform, the algorithm designed for vehicle identification was 

implemented in C++. 

 

Figure 3-1 Obstacles to a real-time LiDAR-based systems 
 

 
Figure 3-2 Proposed real-time LiDAR-based system 
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The proposed system for the real-time airborne traffic monitoring was composed of a 

UAS, a LiDAR scanner, a Global Positioning System (GPS) receiver, an Inertial Navigation 

System (INS), and an on-board computer. With the use of such equipment, we could divide the 

operation of the system into two time dependent blocks: 1) scanning and 2) data analysis. Given 

that the data collection by the LiDAR scanner and positioning system would be operated 

alongside other computations within the on-board computer, the data analysis block was 

designed to run in parallel with the scanning block. Therefore, it was essential to select a 

scanning block time that would allow the data processing algorithm to perform the computations 

before the next scanning block started, as shown in figures 3-3 and 3-4. While the LiDAR and 

positioning systems scanned the data for a given block, the on-board computer would process the 

data from the previous block and would need to finish its computations before the end of the 

current scanning block. This way we could ensure that the rate of data accumulation would not 

exceed the capability of the system to process the information. The algorithm steps for the 

proposed system are explained sequentially in the following subsections. 

 

Figure 3-3 High-level flow chart of the proposed on-board algorithm 
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Figure 3-4 Scheduling of scanning and data processing blocks for the airborne LiDAR-based 
vehicle recognition system 

 

3.1 Scanning 

The data collection is performed by a VLP-16 Lite LiDAR scanner in conjunction with a 

Garmin GPS module and an OXTS xNAV unit, an Inertial Navigation System (INS) equipped 

with GNSS capabilities. During the flight of the UAS, the LiDAR scanner fires up to 600,000 

light beams per second and detects their reflection. By keeping track of the time interval between 

firing a beam and detecting its reflection, the time of flight (TOF), the distance can be calculated 

as follows: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =  (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑡𝑡)−(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑡𝑡)
2

                                (1)  

As the LiDAR scans the environment, the GPS module provides periodic time stamps for 

the data collected. At the same time, the INS unit records the position of the UAS and the 

rotations along the X, Y, and Z coordinate system. Because the successful reconstruction of the 

3D environment depends on aligning the position of the UAS with the measured distances by the 

LiDAR, the flight coordinates are also time stamped. 
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3.2 Data Processing 

With the information collected during the scanning block, the data analysis algorithm 

combines all of the available data to create a three-dimensional representation of the 

environment, referenced to the UAS’s position during the flight. This 3D space goes through a 

filtering step to select the data within the range of interest, and then it undergoes a convolutional 

step for the vehicle detection. These steps are further explained in the following sections. 

1) Read and Prepare the Data 

At the beginning of the data processing block, the on-board computer requests the 

LiDAR and UAS positioning data for the most recent frame and performs the initial data 

preparation. 

The raw LiDAR data are presented with the time of flight (TOF) distance, along with the 

vertical and horizontal firing angles, ω and α, respectively. In order to reconstruct the 3D 

distance from the LiDAR, the TOF distances are decomposed in X, Y, and Z components on the 

basis of the firing angles, as shown in figure 3-5. Because a time stamp is not assigned to all data 

points, the periodicity of the beam firings is used to assign a time stamp to the remaining points. 

The positioning information comes with the time stamp for each measurement with (a) 

latitude, (b) longitude, (c) altitude, (d) heading, (e) pitch, and (f) roll. The latitude and longitude 

values are then converted to the Universal Transverse Mercator (UTM) coordinate system so 

they can be referenced to a 3D system along with the altitude. 
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Figure 3-5 Coordinate decomposition based on TOF distance, R, and firing angles, ω and α [18]. 
 

2) Correct the Reference Coordinates 

The initial preparation of the data yields two 3D data sets that represent the trajectory of 

the UAS and the distance from the objects scanned to the LiDAR. Depending on how the LiDAR 

scanner and positioning system are mounted on the UAS, their reference X, Y, and Z coordinates 

might not be the same. Therefore, the distance between the positioning equipment and LiDAR 

needs to be considered, and angular corrections need to be performed to align both coordinate 

references. In the proposed system the position of the UAV is used as a reference, and the 

LiDAR data are transposed to that coordinate reference. 

3) Interpolate the Data 

Given that the UAS’s positiong recording frequency by the INS unit is much lower than 

that of the LiDAR scanner beam firing, the UAS position path and rotations need to be 

interpolated to provide an appropriate origination coordinate for each beam firing. Before the 

data sets with the position of the UAS and LiDAR measured distance can be combined, a UAS 
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position needs to be assigned to each of the light beams. Given that the INS unit tracks the 

position at 100 Hz, a linear interpolation can be used to calculate the UAS position: 

 

4) Apply Geolocation 

With all the LiDAR coordinates properly referenced to those of the UAS position, the 

two data sets can be combined once axial rotations (heading, pitch, and roll) corrections have 

been applied. During the flight, changes in direction and speed cause the UAS to experience 

rotations as it corrects its course. The equations below demonstrate how the final data set can be 

obtained from the UAS position, LiDAR TOF distance measurements, and axial rotation 

corrections.  
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5) Optimize the Data 

After the proper 3D referencing calculations, the final point cloud needs to be optimized 

for the convolution calculations, the most computationally expensive step of the algorithm. First, 

repeated points need to be removed from the data set. This step is necessary because the LiDAR 

scanner can detect the same location of the area scanned during different parts of the flight, 

yielding the same X, Y, and Z coordinates after the referencing calculations. Once the unique 

point cloud has been obtained, the road data set can be trimmed for the limits of the road 

segment of interest. Because the proposed system is meant to work with scheduled flights, the 

road limits can be obtained from the scheduled flight trajectory. Next, the point cloud needs to be 

filtered for the road level of interest, which can be based on the minimum data Z coordinate on 

the frame. This algorithm can concentrate on regions that vehicles are likely to occupy. The last 

optimization in this step is to add an offset to the data so they can start at the origin of the 3D 

Cartesian coordinates and continue along the positive axes. 

6) Compute the Convolution 

The final step of the vehicle identifying algorithm is to perform the convolution 

computation. Utilizing a pre-selected vehicle model, the processed data captured by the system 

are convolved with this vehicle model to find similarities with the scanned data. On the basis of a 

selected threshold for the result of the convolution computation, the algorithm determines 

whether a vehicle is located in a given location. The convolution threshold is defined as the 

minimum number of individual point superpositions between the vehicle model and the scanned 
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environment point cloud for each convolution step for the algorithm to classify an object as a 

vehicle. This way, a higher convolution threshold, in superpositions/step, requires more details in 

identifying a vehicle. 

Because the calculations near an actual vehicle may yield multiple convolution results 

that surpass the chosen threshold, because of partial superpositions between the actual vehicle 

and the model, smaller convolution results near a higher value need to be disregarded. In other 

words, a scanned vehicle will have partial matches with the selected model, and these partial 

matches need to be filtered from the desired “full” match between the point clouds. At the end of 

the data processing block, the algorithm outputs the coordinates for the detected vehicles minus 

the offset it had generated while optimizing the data. 

The performance of the algorithm described above can be tuned on the basis of the 

scanned time for each frame, the resolution step for the convolution computation, and the 

convolution result threshold. 
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CHAPTER 4 TEST CONDITIONS 

The evaluation of the performance of the proposed system/algorithm was conducted in a 

controlled environment, emulating the real-time conditions of the system and allowing for the 

assessment of different processing units. During the tests, the computer utilized received the raw 

data obtained from the LiDAR scanner and positioning devices and provided the locations of 

vehicles according to the computations in the algorithm described previously. For this 

evaluation, two airborne UAS scans were utilized with different selected values for the 

performance variables: frame time, convolution threshold, and resolution step. For the end-to-

end tests, from data collection to vehicle identification, two processors were utilized to obtain the 

time required for the data processing block. The first processor, a 3-GHz Intel Core 2 Duo, was 

tested with 2 GB, 4 GB, and 8 GB of RAM, while the second processor, a 2.5-GHz Intel Core i7, 

had a fixed 16-GB DDR3 of RAM. 

The first data set corresponded to a 155 m x 55 m scan of a free road segment containing 

a single moving vehicle. Figure 4-1a displays the post-processing point cloud, with the vehicle 

circled in red. The second data set consisted of a scanned 18- m x 236-m urban setting with 

multiple vehicles in a parking lot. Figure 4-1b displays the post-processing point cloud, with 

some of the visible vehicles circled in red. In addition to vehicles, the figure also displays 

buildings and trees, which helped test the algorithm in the typical environment in which the 

airborne LiDAR-based system would be utilized. 

The algorithm analysis of the two data proved that the proposed system can be utilized 

with moving and static vehicles. The point clouds in figure 4-1 were utilized for visual 

verification of the algorithm. For this analysis, the vehicle model utilized for the convolution step 

was extracted from the point cloud. 
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Figure 4-1 Post-processed point cloud from the airborne LiDAR-based system 
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CHAPTER 5 RESULTS AND DISCUSSION 

The initial tests revolved around selecting an appropriate resolution for the convolution 

step. Depending on the resolution size, the computation cost could be lowered, increasing the 

algorithm’s speed. The objective was to downsize the amount of data in the point cloud while 

still maintaining enough information for the algorithm. During the initial development of the 

algorithm, the post-processing point cloud for the single vehicle was subdivided into frames of 

different lengths and evaluated for different convolution step resolutions. Given that the VLP-16 

LiDAR had an accuracy of ±0.03 m, resolution sizes of 0.05 m, 0.1 m, and 1 m were tested. 

While the 55-m width was maintained, the length of the point cloud was edited to evaluate the 

convolution computation with different numbers of data points. The algorithm was successful in 

identifying the vehicle with all of the resolution sizes considered. Table 5-1 displays the time 

required to identify the single-vehicle for the mentioned resolution steps. 

Table 5-1 Single vehicle convolution timing 

 

The choice of resolution step was a trade-off between efficiency and accuracy. Even 

though the 1-m step allowed the convolution calculation to run considerably faster, it also 

eliminated spatial data about the vehicle. For example, a vehicle with a width of 2 m would have 

a very limited number of points to represent that direction, in comparison to smaller steps. The 

lower convolution step would preserve more detail in the point cloud. However, the computation 

time would be considerably higher for larger point clouds. While the larger convolution step of 1 

m had an error of 1.05 m from the actual vehicle position, the 0.1-m step had an error of 0.07 m. 
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Because of the small error of 0.07 m and relatively low computation time, the 0.1-m convolution 

step was selected. 

Given that most scanned areas will have moving vehicles, the fast detection of their 

presence is more important than their accurate instantaneous position, and this small error could 

be ignored. 

After the selection of an appropriate resolution step, the end-to-end system was analyzed 

by using the data set with multiple vehicles, providing a better understanding of the algorithm’s 

efficiency. The full test analyzed the effect of the convolution threshold and frame time duration 

on the performance of the algorithm. 

The data packets from the raw data set for the multiple vehicle scanned environment was 

segmented into different time frame lengths, from 1 second to the full duration of the UAS flight: 

47 seconds. Tables 5-2, 5-3, 5-4, and 5-5 present the average algorithm computation time for the 

different frame times, convolution thresholds, and RAM configuration considered. Under the 

current algorithm and systems utilized, the time requirements for the frame times followed the 

process shown in figure 3-4, maintaining the data processing block timing less that the frame 

time. 

Table 5-2 Average data processing time (sec) for different frame lengths and convolution 
thresholds (superpositions/step) for a 3-GHz Intel Core 2 Duo processor with 2 GB of RAM 
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Table 5-3 Average data processing time (sec) for different frame lengths and convolution 
thresholds (superpositions/step) for a 3-GHz Intel Core 2 Duo processor with 4 GB of RAM 

 

Table 5-4 Average data processing time (sec) for different frame lengths and convolution 
thresholds (superpositions/step) for a 3-GHz Intel Core 2 Duo processor with 8 GB of RAM 

 

Table 5-5 Average data processing time (sec) for different frame lengths and convolution 
thresholds (superpositions/step) for a 3-GHz Intel Core 2 Duo processor with 16 GB of RAM 

 

The four configurations of RAM for the system presented a similar timing trend when the 

convolution threshold was considered. While the algorithm’s elapsed time for thresholds of 150, 

200, and 250 superpositions/step were very similar for each of the four test configurations, the 

lower threshold of 100 superpositions/step presented a slightly higher time. This result was due 

to the fact that a higher rate of partial object superpositions exceeded the threshold, requiring 

more filtering computations to be performed. This was also an indication that the algorithm 

might be failing to distinguish vehicles from other objects because of the lower threshold. 

Contrary to what was expected, as the convolution threshold increased, the results 

showed that the total data processing time did not necessarily decrease indefinitely. With higher 

thresholds, the algorithm was expected to have a lower rate of false detection because only 

vehicles would have the required features to yield a convolution result with the vehicle model 
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that could exceed the selected threshold. The optimal convolution threshold selection will 

depend on the application for the airborne system. For the determination of road occupancy, for 

example, which can tolerate a higher margin of error, lower convolution thresholds such as 150 

superpositions/step would be desired. However, higher convolution thresholds with more than 

250 superpositions/step would be preferred if the airborne system were applied as a 

complementary spatial detection mechanism for autonomous vehicles. 

In addition, the results suggested that the amount of memory utilized in the system did 

not have a significant effect in comparison to that of the processor utilized. The 2-GB, 4-GB, and 

8-GB RAM configurations presented very similar timing results for all test thresholds and frame 

times, indicating that smaller on-board computers with lower power consumption can be 

selected. 

Tables 5-6, 5-7, 5-8, and 5-9 display the average time for each of the algorithm’s steps 

for different frame time selections and convolution thresholds. The values in the tables present 

the average trend for the computation time of the algorithm and have slight variations depending 

on the number of data points and quantity of vehicles in the frame. Generally, the reading of data 

from the hardware and the convolution calculations are expected to consume most of the data 

processing time. 
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Table 5-6 Average computation time for each algorithm step with a selected convolution 
threshold of 100 (superpositions/step) and 2GB of RAM. 

 

Table 5-7 Average computation time for each algorithm step with a selected convolution 
threshold of 150 (superpositions/step) and 2GB of RAM. 

 

Table 5-8 Average computation time for each algorithm step with a selected convolution 
threshold of 200 (superpositions/step) and 2GB of RAM. 
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Table 5-9 Average computation time for each algorithm step with a selected convolution 
threshold of 250 (superpositions/step) and 2GB of RAM. 

 

Because the system was able to operate within the time constraints, the algorithm could 

be reviewed for its accuracy in detecting vehicles and examined for how the convolution 

threshold and frame time duration affected its performance. For this precision evaluation, the 

detection ratio and false detection ratio were utilized. These measures were defined as follows: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  # 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
# 𝑜𝑜𝑜𝑜 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

∙ 100%                         (7) 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  # 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
# 𝑜𝑜𝑜𝑜 𝐴𝐴𝐴𝐴𝑡𝑡𝑢𝑢𝑢𝑢𝑢𝑢 𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

∙ 100%                            (8) 

The graphs in figure 5-1 display the detection ratio and false detection ratio for 

convolution thresholds of 100, 150, 200, and 250 superpositions/step. In considering the frame 

time, the algorithm had a better detection ratio performance for shorter segments, such as 1 and 2 

seconds. Conversely, as the convolution threshold increased, the false detection ratio decreased.  

This behavior was due to the number of times the road level was detected during the 

flight and the density of points per scanned frame. The selection of smaller time frame intervals 

increased the frequency with which the algorithm was executed,  adjusting the detection for the 

road level more often. In a road segment with a slope, such as the data set analyzed, delaying the 

detection of the road level could eliminate parts of a vehicle from the convolution computation. 

However, increasing the length for the time frames also increased the number of points per area 

scanned. Because rotations during the flight of the UAS could cause the LiDAR scanner to detect 
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areas that were farther ahead or past its current trajectory, more data points would exist around 

that location. With a higher density of points, which also means a higher level of detail in the 

point cloud, the algorithm had a better likelihood of correctly identifying vehicles. 

The plot in figure 5-2 displays the normalized quantity of road level detection and 

normalized density of points per frame, providing an intuition for the detection and false 

detection rates. During the full 47 second flight, the smaller frame times identified the road level 

with a higher frequency than longer segments. This prevented vehicles from being eliminated 

from the convolution step, yielding a high detection ratio. Nonetheless, because of the lower 

density of points and consequent lower level of point cloud detail, some of the objects in the 

frame were falsely identified as vehicles. On the other hand, the longer frames had a high density 

of data points, providing enough features for the algorithm and eliminating all false detection. 
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Figure 5-1 Detection ratio and false detection ratio for different resolution thresholds 
(superpositions/step) and time frames 

 

Figure 5-2 Normalized density of points and road level adjustments frequency 

(a) Convolution Threshold = 100 superpositions/step (b) Convolution Threshold = 150 superpositions/step   

(c) Convolution Threshold = 200 superpositions/step (d) Convolution Threshold = 250 superpositions/step             
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In order to maintain a high detection ratio for the algorithm, larger values for the 

convolution threshold could increase the possibility that vehicles would be accurately identified. 

However, limitations during the UAS flight could prevent vehicles from having their entire 

surface scanned. This was evident in the point cloud with multiple vehicles. During the scanning 

period, some of the vehicles in that area were covered by trees and did not have their entire 

surface represented in the 3D representation created by the system. Therefore, lower thresholds 

need to be considered so that partially scanned vehicles can be properly identified. 

Under the constraints of the proposed algorithm, shorter time frames will provide a 

superior overall performance. However, the selection of threshold values will depend on the 

target application for the system. For example, if the proposed system is utilized as an 

independent vehicle identifying method for real-time occupancy analysis of a road network, then 

the lower convolution thresholds will provide an adequate estimation of the actual state of the 

area of interest, with some overestimation. In the context of autonomous vehicles, where 

multiple sensing mechanisms are employed, higher convolution thresholds will provide high 

detection and low false detection ratios that can be compared against data from other sources, 

providing an extra layer of verification to ensure safety and reliability. 
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CONCLUSION AND FUTURE WORK 

The proposed solution for aerial LiDAR object detection will not only address current 

transportation network control needs but also has the potential to benefit new emerging 

applications (e.g., autonomous vehicles). It introduces a new level of autonomy and independent 

decision making that will reduce the need for data transfer. However, when needed, the data 

transfer could be selective and could easily be integrated with other decision making processes, 

such as those used in AVs and smart transportation networks. In addition to the data provided by 

vehicle-mounted sensors, the aerial information could be integrated to provide a more 

comprehensive perception of the surrounding environment and road conditions. With detection 

ratios of greater than 85 percent and computation timing corresponding to fractions of the scan 

times, the airborne LiDAR-based algorithm will provide an extra layer of verification, with room 

for detection improvement, given the remaining timing budget between data collection and 

analysis. 

At the current stage of the airborne, LiDAR-based vehicle recognition system, it is 

evident that the density of points and the detection of the road level are crucial factors in 

correctly identifying vehicles in traffic. Therefore, improving the performance of the algorithm is 

directly related to these variables. In the context of intelligent transportation systems, such as the 

one described by Zhou et al. [19], in which the requirement of redundant spatial scanning 

devices becomes crucial to ensure safety and reliability, the proposed airborne LiDAR system 

would provide an extra source of traffic information. The connection of multiple UASs equipped 

with the LiDAR-based system and other terrestrial scanning mechanisms would increase the 

density of data per area, providing more details from the scanned environment. While this work 
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focused on the identification of vehicles, the alignment and combination of data from different 

sources has the potential to expand the identification capabilities of this system to other objects. 
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